SIDDARTHA INSTITUTE OF ENGINEERING AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Surject with code Fiber Optic Communication (18EC0438)

Course & Branch: B.Tech & ECE

Year &Sem: IV-B.Tech & I-Sem

Regulation: R18

UNIT –I INTRODUCTION

1.	a) Define the Snell's law	[L1][CO1]	[2M]
	b) List the elements of Ray optics	[L1][CO1]	[2M]
	c) Write shot note of Circular Waveguides	[L2][CO1]	[2M]
	d) Write any two different between step index & graded index fiber.	[L2][CO1]	[2M]
	e) List out any two the merits and demerits of optical fiber communication	[L1][CO1]	[2M]
2.	Explain the Elements of Optical Communication System with neat sketch.	[L2][CO1]	[10M]
3.	a) Explain about the Evolution of optical fiber systems.	[L2][CO1]	[4M]
	b) Illustrate on Reflection and Refraction with neat sketch.	[L2][CO1]	[6M]
	a) List the applications of optical fiber communication.	[L2][CO1]	[5M]
4.	b) A light wave is travelling in a semiconductor medium (GaAs) of refractive index 3.6.It is incident on a different semiconductor medium (AlGaAs) of refractive index 3.4 & angle of incidence is 80°. Calculate numerical aperture & acceptance angle. Will it result in total internal reflection? Comment on the result.	[L3][CO1]	[5M]
5.	a) Consider multimode fiber that has a core refractive index of 1.488 and core cladding index difference of 2.0%. Evaluate numerical aperture, critical angle and acceptance angle.	[L3][CO1]	[5M]
	b) List out the merits and demerits of optical fiber communication.	[L1][CO1]	[5M]
6	a) Define critical angle and also derive the expression for critical angle.	[L3][CO1]	[5M]
0.	b) Describe the single mode step Index fiber with neat sketch.	[L2][CO1]	[5M]
	a) Describe the Multimode Step Index fiber with neat sketch.	[L2][CO1]	[5M]
7.	b) Fiber has normalized frequency 26.6 & operating wavelength 1300nm, if the radius of the fiber core is 25µm.Compute the numerical aperture.	[L3][CO1]	[5M]
o	a) Compare step index & graded index fiber.	[L2][CO1]	[5M]
0.	b) Describe the multimode Graded Index fiber with neat sketch.	[L2][CO1]	[5M]
	a) Write short notes on Mode theory of Circular Waveguides.	[L1][CO1]	[4M]
9.	b) Calculate number of modes of an optical fiber having diameter of $50\mu m$ & $n1 = 1.48$ & $n2 = 1.46$ having operating wavelength $0.82\mu m$.	[L3][CO1]	[6M]
10.	a) Explain about the Snell's law and significance of numerical aperture.	[L2][CO4]	[5M]
	b) Illustrate on ray optics in detail with neat diagrams.	[L2][CO1]	[5M]
11.	a) Elaborate about the total internal reflection with the help of suitable	[L6][CO1]	[4M]

optical cable setup.		
b)Develop the Expression for Acceptance angle and Numerical aperture.	[L3][CO1]	[6M]

UNIT –II TRANSMISSION CHARACTERISTIC OF OPTICAL FIBERS

	a) Define Information Capacity.	[L1] [CO2]	[2M]
	b) What are the various types of losses in optical fiber.	[L1] [CO2]	[2M]
1.	c) Discuss Core and Cladding Losses.	[L2] [CO2]	[2M]
	d) What is mean by attenuation?	[L1] [CO2]	[2M]
	e) Write the working Principle of OTDR.	[L1] [CO2]	[2M]
2.	Demonstrate any two types of Losses in Optical Fiber Communication System.	[L2] [CO2]	[10M]
2	a) Explain the Design Optimization of Single mode fibers.	[L2] [CO2]	[5M]
5.	b) How to minimize the micro bending losses in the fiber?	[L1] [CO2]	[5M]
4	a) How attenuation is caused by scattering losses & bending losses?	[L1] [CO2]	[5M]
4.	b) Explain in detail about the Mechanisms which cause's Absorption.	[L2] [CO2]	[5M]
E	a) Define linear scattering. Explain about Rayleigh & Mie scattering.	[L2] [CO2]	[5M]
5.	b) Develop the expression for waveguide dispersion.	[L3] [CO2]	[5M]
6.	Explain dispersion occurring in multimode fibers in detail with expressions.	[L2] [CO2]	[10M]
7	a) Distinguish between intrinsic & extrinsic Absorption.	[L2] [CO3]	[5M]
7.	b) Determine the theoretical cutoff wavelength for single mode fiber.	[L3] [CO2]	[5M]
0	a) What is attenuation? Explain in detail.	[L2] [CO2]	[5M]
0.	b) Develop the expression for material dispersion.	[L3] [CO3]	[5M]
9.	Analyze pulse broadening in graded index waveguides.	[L4] [CO2]	[10M]
10	a) Develop the expression for total dispersion in single mode fiber	[L3] [CO3]	[5M]
10.	b) How refractive index profile optimizes the design in a single mode fiber?	[L1] [CO2]	[5M]
11	Illustrate on the two main causes of Intra Modal Dispersion.	[L2] [CO3]	[5M]
11.	Explain the phenomenon of Rayleigh scattering in scattering loss.	[L2] [CO3]	[<mark>5M]</mark>

1	a) Define direct bandgap materials and indirect bandgap materials	[L1] [CO5]	[2M]
	b) Write the advantages of LED.	[L1] [CO5]	[2M]
	c) Sketch the emitter LED circuit.	[L3] [CO5]	[2M]
	d) Define LASER	[L1] [CO3]	[2M]
	e) Write the Temperature effects of Laser	[L1] [CO3]	[2M]
2	a) Explain LED Structure with neat sketch.	[L2][CO3]	[5M]
	b)A <i>planar LED</i> is fabricated from GaAs which has a refractive index of 3.6.(i) Calculate the optical <i>power</i> emitted into air as a percentage of the internaloptical power for the device when the <i>transmission factor</i> at the crystal-air interface is 0.68.(ii) When the optical power generated internally is 50% of the electric power supplied, determine the external powerefficiency.	[L3][CO3]	[5M]
3	a) Illustrate on light source materials in detail.	[L2][CO2]	[5M]
	b) Explain about the surface emitter LED with neat diagram.	[L2][CO3]	[5M]
4	a)Describe about the modulation of LED in detail	[L2][CO3]	[5M]
	b)Illustrate on edge emitter LED with neat diagram.	[L2][CO3]	[5M]
5	a) Explain about quantum efficiency and LED power.	[L2][CO3]	[5M]
	b) Demonstrate on direct and indirect bandgap materials in detail.		[5M]
6	a) Explain about resonant frequencies of LASER Diode	[L2][CO3]	[5M]
	b) A GaAs optical source with a refractive index of 3.6 is coupled to a silica fiberthat has a refractive index is 1.48. If the fiber and the source are in		[5M]
	closephysical contact then find the Fresnel reflection at the interface		
7	a) Develop the expression for modes and threshold condition of LASER	[1,3][CO3]	[5M]
,	b)What power is radiated by an LED if its quantum efficiency is 3% and the	[10][000]	[5M]
	peak wavelength is 670nm?	[L3][CO3]	[~]
8	a) Illustrate about external quantum efficiency of LASER.	[L2][CO3]	[5M]
_	b) Develop the rate equation for LASER diode.	[L3][CO3]	[5M]
9	a) Explain in detail the various Characteristics of Light Source	[L2][CO3]	[5M]
	b) Describe about Temperature effects of Laser	[L3][CO3]	[5M]
10	a) Explain in detail about Quantum laser.	[L2][CO3]	[5M]
	b) Illustrate about source to fiber power launching.	[L2][CO3]	[5M]
11	a) Explain about Distributed feedback LASER.	[L2][CO3]	[5M]
	b) Write short notes on resonant frequencies of optical sources.	[L2][CO3]	[5M]

Fiber Optical Receivers				
1	a) Define avalanche multiplication noise in APD diode	[L1][CO4]	[2M]	
	b) List the operating parameters of Si, Ge, InGaAs for PIN diode	[L1][CO4]	[2M]	
	c) Sketch the schematic representation of a PIN photodiode circuit	[L3][CO4]	[2M]	
	d) State the signal transmission for an optical receiver.	[L1][CO4]	[2M]	
	e) List out the quantum limit in optical receiver.	[L1][CO4]	[2M]	
	a) Explain in detail the operation of Avalanche Photo Diode with its structure.	[L2][CO4]	[5M]	
	b) A photo diode has a quantum efficiency of 65% when photons of energy of	[L3][CO3]	[5M]	
2	1.5 x 10-19 J are incident upon it. (i) Find the operating wavelength of the			
	photodiode, (ii) Calculate the incident optical power required to obtain a photo			
	current of 2.5nA when the photodiode is operating as described above.			
3	a) Explain about avalanche multiplication noise in APD diode.	[L2][CO4]	[5M]	
5	b) Summarize the <i>comparisons of</i> photo detectors.	[L2][CO4]	[5M]	
	a) Explain the principle behind the operation of an PIN photo diode.	[L2][CO4]	[5M]	
4	b) Explain the simple energy band diagram for a PIN photodiode with neat	[L2][CO4]	[5M]	
	diagram.			
5	a) Illustrate how noises are entered into photo detector.	[L2][CO4]	[5M]	
5	b) Analyze photo detector receiver with simple model and equivalent circuit.	[L4][CO4]	[5M]	
6	a) Develop the equation for S/N ratio of an optical fiber.	[L3][CO2]	[5M]	
	b) List the operating parameters of Si, Ge, InGaAsfor avalanche photo diode.	[L1][CO2]	[5M]	
7	a) Develop the expression for response time of a photodiode.	[L3][CO4]	[5M]	
/	b) Explain the working of depletion layer photocurrent with diagram.	[L2][CO4]	[5M]	
0	a) Explain the digital signal transmission for an optical receiver?	[L2][CO4]	[5M]	
0	b) How the receiver configuration works in optical receiver?	[L1][CO4]	[5M]	
	a) List the operating parameters of Si, Ge, InGaAs for PIN diode.	[L2][CO4]	[5M]	
9	b) A given silicon avalanche photodiode has a quantum efficiency of 65% at a	[L3][CO4	[5M]	
	wavelength of 900nm.Suppose 0.5µW of optical power produces a multiplied			
	photocurrent of 10µA. Calculate the multiplication M.			
10	a) Explain the mechanism of error sources and disturbance in the optical pulse	[L3][CO4]	[5M]	
	detection with diagram.			
	b) Demonstrate any one type of Preamplifier in detail.	[L3][CO4]	[5M]	
11	a) Explain about the probability of error in detail.	[L2][CO4]	[5M]	
	b) Illustrate on the quantum limit inoptical receiver	[L2][CO4]	[5M]	

Fiber Ontical Receivers

	a)List the types of budget in optic	[L1][CO5]	[2M]
1	b)Write the applications of the Optical amplifier	[L1][CO5]	[2M]
	c)List the differs between the optical multiplexing and de-multiplexing techniques	[L1][CO5]	[2M]
	d)Define the <i>link budget calculations</i>	[L1][CO5]	[2M]
	e)Draw the diagram of the optic <i>de-multiplexingtechnique</i> .	[L2][CO5]	[2M]
2	a) Explain Optical Fiber System Design Specification.	[L2][CO5]	[6M]
4	b) Explain the Rise Time Budget analysis with basic elements.	[L2][CO5]	[4M]
3	a)What is bandwidth budget.	[L1][CO5]	[6M]
3	b) Describe about power budget with examples	[L2][CO5]	[4M]
	. a) Describe about link budget calculations	[L2][CO5]	[5M]
	b) $2*2$ biconical fiber coupler has an optical input power level of P0=400 μ w,		[5M]
4	the output power at the other 3 ports are P1=180 μ w, P2=170 μ w, P3=12.6nw.	[L3][CO5]	
	Find performance parameters.		
_	a)Summarize on system performance using rise time budget of digital systems.	[L3][CO5]	[5M]
3	b) Explain the significance of system consideration in point-to-point fiber links.	[L2][CO5]	[5M]
	a) Illustrate on line coding with neat diagrams.	[L2][CO5]	[3M]
6	b) Analyze the system performance using link power budget of digital systems.	[L4][CO5]	[7M]
7	<i>a</i>)Explain optical multiplexing and de-multiplexing techniques	[L2][CO5]	[3M]
/	b)Explain about Optical amplifier and applications	[L2][CO5]	[7M]
	a)Explain about bandwidth budget.	[L2][CO5]	[5M]
8	b) An optical transmission system is constrained to have 600 GHZ channel		[5M]
o	spacing. How many wavelength channels can be utilized in the1536 to 1556	[L2][CO5]	
	a) Draw the diagram of optical multiplaying surfain each blocks		[5]M]
	a) Draw the diagram of optical multiplexing explain each blocks b) IED spectral width of 40pm has rise time of 15ps, to is 21ps, to is 14ps	[L2][C05]	[51VI]
9	and t_{mod} is 3.9ns. Find total system rise time.	[L3][CO5]	[3141]
10	Explain optical amplifier and it applications.	[L2][CO5]	[10M]